Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices.… Click to show full abstract
Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a new scheme for synthesis of optical spectra from nonlinear ultrasound harmonics using a hybrid liquid-state and nanoplasmonic device compatible with fibre-optic technology. The synthesised spectra consist of a set of equally spaced optical Brillouin light scattering modes having a well-defined phase relationship between each other. We suggest that these spectra may be employed as optical frequency combs whose spectral composition may be tuned by controlling the nonlinear acoustic interactions.
               
Click one of the above tabs to view related content.