It is well known that the absorption efficiency of a suspended monolayer graphene in the optical wavelength rang is only 2.3%, which limits its optoelectronic applications. In this work, we… Click to show full abstract
It is well known that the absorption efficiency of a suspended monolayer graphene in the optical wavelength rang is only 2.3%, which limits its optoelectronic applications. In this work, we numerically demonstrate dual-band absorption enhancement of monolayer graphene at optical frequency, with the maximum absorption efficiency reaching to about 70% under optimum conditions. The dual-band absorption enhancement arises from the excitations of surface plasmon polaritons and magnetic dipole resonances in metamaterials. The monolayer graphene is sandwiched between a periodic array of Ag nanodisks and a SiO2 spacer supported on an Ag substrate. The resonance wavelengths of two absorption bands arising from surface plasmon polaritons and magnetic dipole resonances can be easily tuned by the array period and the diameter of the Ag nanodisks, respectively. Our designed graphene light absorber may find some potential applications in optoelectronic devices, such as photodetectors.
               
Click one of the above tabs to view related content.