LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electromagnetically induced transparency and absorption in a compact silicon ring-bus-ring-bus system.

Photo from wikipedia

We have theoretically and experimentally demonstrated electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) phenomena in a compact silicon ring-bus-ring-bus (RBRB) system. The two ring resonators in our RBRB… Click to show full abstract

We have theoretically and experimentally demonstrated electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) phenomena in a compact silicon ring-bus-ring-bus (RBRB) system. The two ring resonators in our RBRB system are both directly coupled and indirectly coupled through an asymmetric tricoupler. The coherent interference between a radiant mode and a subradiant mode in the two rings results in EIT and EIA effects at the through and drop ports, respectively. A theoretical model is established to analyze the proposed system based on temporal coupled mode theory. Finite-difference time-domain method is also employed to simulate the characteristics of this system. Consequently, RBRB structures were fabricated on a silicon-on-insulator platform and EIT and EIA transmissions have been observed simultaneously in the two outputs. The experimental results agree with our theoretical modeling and numerical simulations.

Keywords: ring bus; compact silicon; system; induced transparency; bus; electromagnetically induced

Journal Title: Optics express
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.