For the first time, to the authors' best knowledge, this paper demonstrates the digital, holographic fabrication of graded, super-basis photonic lattices with dual periodicity, dual basis, and dual symmetry. Pixel-by-pixel… Click to show full abstract
For the first time, to the authors' best knowledge, this paper demonstrates the digital, holographic fabrication of graded, super-basis photonic lattices with dual periodicity, dual basis, and dual symmetry. Pixel-by-pixel phase engineering of the laser beam generates the highest resolution in a programmable spatial light modulator (SLM) for the direct imaging of graded photonic super-lattices. This technique grants flexibility in designing 2-D lattices with size-graded features, differing periodicities, and differing symmetries, as well as lattices having simultaneously two periodicities and two symmetries in high resolutions. By tuning the diffraction efficiency ratio from the SLM, photonic cavities can also be generated in the graded super-lattice simultaneously through a one-exposure process. A high quality factor of over 1.56 × 106 for a cavity mode in the graded photonic lattice with a large super-cell is predicted by simulations.
               
Click one of the above tabs to view related content.