LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimizing depth-of-field extension in optical sectioning microscopy techniques using a fast focus-tunable lens.

Photo from wikipedia

Volume imaging based on a fast focus-tunable lens (FTL) allows three-dimensional (3D) observation within milliseconds by extending the depth-of-field (DOF) with sub-micrometer transverse resolution on optical sectioning microscopes. However, the… Click to show full abstract

Volume imaging based on a fast focus-tunable lens (FTL) allows three-dimensional (3D) observation within milliseconds by extending the depth-of-field (DOF) with sub-micrometer transverse resolution on optical sectioning microscopes. However, the previously published DOF extensions were neither axially uniform nor fit with theoretical prediction. In this work, complete theoretical treatments of focus extension with confocal and various multiphoton microscopes are established to correctly explain the previous results. Moreover, by correctly placing the FTL and properly adjusting incident beam diameter, a uniform DOF is achieved in which the actual extension nicely agrees with the theory. Our work not only provides a theoretical platform for volumetric imaging with FTL but also demonstrates the optimized imaging condition.

Keywords: fast focus; tunable lens; microscopy; depth field; focus tunable; extension

Journal Title: Optics express
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.