LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing.

Photo from wikipedia

Developing micro/nanoscale wire (MNW) lasers with single-mode operation is critical for realizing their practical applications, however, most reported MNW lasers operate in multi-modes, because lacking of mode selection mechanisms. In… Click to show full abstract

Developing micro/nanoscale wire (MNW) lasers with single-mode operation is critical for realizing their practical applications, however, most reported MNW lasers operate in multi-modes, because lacking of mode selection mechanisms. In this work, a simple and direct way to realize stable, single-mode MNW laser without complicated micro/nano-manipulation was demonstrated. We have found and proved that the position of the active region plays a key role in determining the lasing mode of MNW lasers, which can be used to realize single-mode lasing in MNWs. We propose self-selection mechanism of Fabry-Pérot MNW cavity for single-mode lasing due to location-dependent field distribution in MNWs, which is characterized by suppressing the multiple longitudinal mode oscillation of the MNW laser. GaN MNW lasers with different lengths and diameters have been fabricated, verifying the self-selection mechanism of the cavity experimentally. Moreover, we demonstrate the single-mode, room temperature optically pumped MNW laser with an extremely low threshold (~40 kW/cm2) in condition of appropriate cavity length, opening an opportunity to realize stable single-mode, low-threshold MNW laser for easy integration in constructing micro/nanoscale photonic and optoelectronic circuits and devices.

Keywords: micro nanoscale; mode; selection; cavity; single mode; mode lasing

Journal Title: Optics express
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.