LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-path Sagnac interferometer with Dove prism for orbital-angular-momentum photon manipulation.

Photo by bladeoftree from unsplash

Orbital angular momentum (OAM) is an important resource in high-dimensional quantum information processing, as its quantum number can be infinite. Dove prism (DP) is a most common tool to manipulate… Click to show full abstract

Orbital angular momentum (OAM) is an important resource in high-dimensional quantum information processing, as its quantum number can be infinite. Dove prism (DP) is a most common tool to manipulate OAM light. However, the Dove prism changes the polarization of the photon states and decreases the sorting fidelity of the interferometer. In this work, we analyze the polarization-dependent effect of the DP on OAM light manipulation in the normal single-path Sagnac interferometers (SPSIs) with beam splitter (BS) and polarizing beam splitter (PBS). The results demonstrate that the BS SPSI is more sensitive to the input polarization and the specific parameters of the DP. We have also proposed and realized a modified BS SPSI, of which the sorting fidelity can be 100% in principle and is independent on the input polarization and the transmission matrix of the DP. The experiments demonstrate that the fidelity of the modified BS SPSI is about 5%~10% higher than that of the normal one. The modified BS SPSI is easy to implement (only two more half-wave plates are required) and is stable for free running at the scale of several hours. These merits make the structure suitable for applications in critical quantum information processing tasks, such as quantum cryptography.

Keywords: path sagnac; angular momentum; prism; orbital angular; single path; dove prism

Journal Title: Optics express
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.