Novel multi-tasking geometric phase metasurfaces were incorporated into a modified degenerate cavity laser as an output coupler to efficiently generate spin-dependent twisted light beams of different topologies. Multiple harmonic scalar… Click to show full abstract
Novel multi-tasking geometric phase metasurfaces were incorporated into a modified degenerate cavity laser as an output coupler to efficiently generate spin-dependent twisted light beams of different topologies. Multiple harmonic scalar vortex laser beams were formed by replacing the laser output coupler with a shared-aperture metasurface. A variety of distinct wave functions were obtained with an interleaving approach - random interspersing of geometric phase profiles within shared-aperture metasurfaces. Utilizing the interleaved metasurfaces, we generated vectorial vortices by coherently superposing of scalar vortices with opposite topological charges and spin states. We also generated multiple partially coherent vortices by incorporating harmonic response metasurfaces. The incorporation of the metasurface platforms into a laser cavity opens a pathway to novel types of nanophotonic functionalities and enhanced light-matter interactions, offering exciting new opportunities for light manipulation.
               
Click one of the above tabs to view related content.