LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer.

Photo by jessbaileydesigns from unsplash

This work demonstrates the grating formation of bulk nanoparticle polymer composites through an improved interference optical system under ultrafast nanoseconds exposure of a silver nanoprisms (NPs) dispersed photo-polymerizable mixture in… Click to show full abstract

This work demonstrates the grating formation of bulk nanoparticle polymer composites through an improved interference optical system under ultrafast nanoseconds exposure of a silver nanoprisms (NPs) dispersed photo-polymerizable mixture in the case of 532 nm wavelength. The polymerizable mixture is composed of phenathrenequinone (PQ) (photoinitiator) and methyl methacrylate (MMA) (monomer). The mechanism in this bulk nanoparticle polymer composite is analyzed by mixing nonlocal polymerization driven diffusion (NPDD) model and absorption modulation caused by the spatial concentration distribution difference of silver NPs. We find that the attenuation of diffraction efficiency under pulsed exposure is due to the reciprocity law failure. This work presents an analysis of the cause of reciprocity failure and improvement in holographic properties by doping silver NPs. The optimized photopolymer presents diffraction efficiencies as high as 51.4% with 1.8 μs cumulative pulsed exposure. Cumulative gratings strength is also enhanced by 70% while doping silver NPs under 1.5 μs cumulative pulsed exposure.

Keywords: silver nanoprisms; pulsed exposure; improvement ultrafast; silver nps; silver

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.