The filter bank multicarrier (FBMC) modulation format is considered as a potential candidate for future wireless 5G due to its feature of high suppression for out-of-band emissions, which allows combining… Click to show full abstract
The filter bank multicarrier (FBMC) modulation format is considered as a potential candidate for future wireless 5G due to its feature of high suppression for out-of-band emissions, which allows combining multiple sub-bands with very narrow band-gaps, and hence increases the overall wireless transmission capacity. In this paper, we experimentally demonstrate the generation of multi sub-bands FBMC signals at millimeter-wave (mm-wave) for radio-over-fiber (RoF) systems. The designed multi sub-bands FBMC system consists of 5 sub-bands of 800 MHz with inter sub-band gaps of 781.25 kHz. The composite 5 sub-bands FBMC signal is generated with no band-gap between dc to the first sub-band to preserve the bandwidth of the system. Each FBMC sub-band consists of 1024 sub-carriers and is modulated with uncorrelated data sequences. The aggregate FBMC signal is carried optically by externally modulating a free running laser and is converted to millimeter waves (mm-waves) by photomixing with another free running laser at a frequency offset of 53 GHz. At the receiver, the received electrical mm-wave signal is down-converted to an intermediate frequency (IF) and then post-processed using digital signal processing (DSP) techniques. With the use of the simple recursive least square (RLS) equalizer in the DSP receiver, the achieved aggregate data rate is 8 Gbps and 12 Gbps for 16 quadrature amplitude modulation (QAM), and 64 QAM, respectively with a total bandwidth of 4.2 GHz. The system performance is evaluated by measuring error vector magnitude (EVM) and bit error rate (BER) calculations.
               
Click one of the above tabs to view related content.