Birefringent metamaterial shows fantastic properties in controlling the propagation of electromagnetic wave. Based on the birefringent theory, a Ku-band birefringent metamaterial lens is proposed, which can radiate high gain TE… Click to show full abstract
Birefringent metamaterial shows fantastic properties in controlling the propagation of electromagnetic wave. Based on the birefringent theory, a Ku-band birefringent metamaterial lens is proposed, which can radiate high gain TE wave with a TE wave feed and deflect incident TM wave. To realize bi-functional high gain radiation or deflection, the required permittivity distribution is analyzed first. Then, the unit cells of metamaterial lens are carefully designed based on effective permittivity equations to achieve the desired permittivity distribution. To demonstrate the present design, a cylindrical birefringent lens prototype is fabricated using 3D printing techniques. The experiments verify that, with a rectangular waveguide feeding on the lens surface or a horn antenna illuminated in the far field, the Ku-band birefringent metamaterial lens performs as a high-gain broadband radiator for the TE wave feed or a deflector for the incident TM wave.
               
Click one of the above tabs to view related content.