LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-efficiency energy transfer in perovskite heterostructures.

Photo from wikipedia

Here, we report the energy transfer in (PEA)2PbI4/MAPbBr3 perovskite heterostructures. Under two-photon excitation, the photoluminescence (PL) emission of the (PEA)2PbI4 flake is nearly completely quenched, while that of the MAPbBr3… Click to show full abstract

Here, we report the energy transfer in (PEA)2PbI4/MAPbBr3 perovskite heterostructures. Under two-photon excitation, the photoluminescence (PL) emission of the (PEA)2PbI4 flake is nearly completely quenched, while that of the MAPbBr3 microplate is greatly increased (6.5 folds higher) in the heterostructure. The opposite variation character of the PL emissions is attributed to the radiative energy transfer from the (PEA)2PbI4 flake to the MAPbBr3 microplate. The radiative energy transfer occurs on an ultrafast timescale with a high efficiency (~100%). In addition, a strongly thickness- and wavelength-dependent interlayer interaction is observed under one-photon excitation. This work advocates great promise for revealing the interlayer interaction of perovskite heterostructures and developing high-performance optoelectronic devices.

Keywords: high efficiency; energy transfer; perovskite heterostructures; energy

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.