An optical vortex with orbital angular momentum (OAM) can be used to induce microscale chiral structures in various materials. Such chiral structures enable the generation of a nearfield vortex, i.e.… Click to show full abstract
An optical vortex with orbital angular momentum (OAM) can be used to induce microscale chiral structures in various materials. Such chiral structures enable the generation of a nearfield vortex, i.e. nearfield OAM light on a sub-wavelength scale, thereby leading to further nanoscale mass-transport. We report on the formation of a nanoscale chiral surface relief in azo-polymers due to nearfield OAM light. The resulting nanoscale chiral relief exhibits a diameter of ca. 400 nm, which corresponds to less than 1/5-1/6th of the original chiral structure (ca. 2.1 µm). Such a nanoscale chiral surface relief is established by the simple irradiation of uniform visible plane-wave light with an intensity of <500 mW/cm2.
               
Click one of the above tabs to view related content.