LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes.

Photo from wikipedia

An Acousto-Optic Gyroscope (AOG) consisting of a photonic integrated device embedded into two inherently matched piezoelectric surface acoustic wave (SAW) resonators sharing the same acoustic cavity is presented. This constitutes… Click to show full abstract

An Acousto-Optic Gyroscope (AOG) consisting of a photonic integrated device embedded into two inherently matched piezoelectric surface acoustic wave (SAW) resonators sharing the same acoustic cavity is presented. This constitutes the first demonstration of a micromachined strain-based optomechanical gyroscope that uses the effective index of the optical waveguide due to the acousto-optic effect rather than conventional displacement sensing. The theoretical analysis comparing various photonic phase sensing techniques is presented and verified experimentally for the cases based on a Mach-Zehnder interferometer, as well as a racetrack resonator. This first prototype integrates acoustic and photonic components on the same lithium niobate on insulator (LNOI) substrate and constitutes the first proof of concept demonstration of the AOG. This approach enables the development of a new class of micromachined gyroscopes that combines the advantages of both conventional microscale vibrating gyroscopes and optical gyroscopes.

Keywords: acoustic wave; optic effect; acousto optic; surface acoustic

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.