LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reconfigurable three-dimensional mode (de)multiplexer/switch via triple-silicon-ITO-waveguide directional coupler.

Photo from wikipedia

A reconfigurable mode (de)multiplexer/switch (RMDS) is a pivotal component for the mode routing in mode-division multiplexing (MDM) networks. Here, we propose a three-dimensional (3D) RMDS via a triple-waveguide directional coupler,… Click to show full abstract

A reconfigurable mode (de)multiplexer/switch (RMDS) is a pivotal component for the mode routing in mode-division multiplexing (MDM) networks. Here, we propose a three-dimensional (3D) RMDS via a triple-waveguide directional coupler, consisting of a lower doped silicon waveguide, a central plasmonic horizontal-slot waveguide with indium-tin-oxide (ITO) and an upper doped polycrystalline-silicon waveguide. The enhanced light-matter-interactions can be achieved via the central plasmonic metal-oxide-semiconductor (MOS) mode. The multiplexing states of the proposed 3D-RMDS can be switched by adjusting the applied voltage bias on the ITO layer. The simulation results reveal that a 3D quasi-TM0 and quasi-TM1 RMDS is with a compact length of 8.429 μm, the mode crosstalk of -20.3 dB (-9.2 dB) and the insertion loss of 0.06 dB (1.47dB) at the wavelength of 1550 nm for the "OFF" ("ON") state, respectively. The proposed 3D-RMDS can be applied in future 3D on-chip MDM networks to achieve a flexible mode-routing and further enhance the transmission capacity.

Keywords: three dimensional; via triple; mode; multiplexer switch; silicon; mode multiplexer

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.