LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser.

Photo from wikipedia

Chemical mapping was demonstrated with a mid-infrared (MIR) microspectroscopy setup based on a supercontinuum source (SC) emitting in the spectral range from 1.55 to 4.5 µm and a MEMS-based Fabry-Pérot… Click to show full abstract

Chemical mapping was demonstrated with a mid-infrared (MIR) microspectroscopy setup based on a supercontinuum source (SC) emitting in the spectral range from 1.55 to 4.5 µm and a MEMS-based Fabry-Pérot filter spectrometer. Diffraction limited spatial resolution in reflection geometry was achieved. A multilayer film consisting of different polymers and mixtures thereof was measured and results were compared to those gained with a conventional FTIR microscope equipped with a thermal MIR source. Results show that compared to thermal sources, the application of the SC source results in higher signal-to-noise ratios together with better spatial resolution and faster scanning. Furthermore, diffraction limited imaging of red blood cells was demonstrated for the first time in the MIR spectral region in reflection mode. The distinctive characteristics of the MIR spectral region in conjunction with the high brightness, spatial coherence and broadband nature of supercontinuum radiation show the potential for improving infrared microscopy significantly.

Keywords: mid infrared; supercontinuum; microspectroscopy; diffraction limited

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.