LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrically tunable multifunctional metasurface for integrating phase and amplitude modulation based on hyperbolic metamaterial substrate.

Photo from wikipedia

Active metasurfaces, which are tunable and reconfigurable nanophotonic structures with active materials, have been in spotlight as a versatile platform to control the profiles of scattered light. These nanoscale structures… Click to show full abstract

Active metasurfaces, which are tunable and reconfigurable nanophotonic structures with active materials, have been in spotlight as a versatile platform to control the profiles of scattered light. These nanoscale structures show surpassing functionalities compared to the conventional metasurfaces. They also play an important role in a wide range of applications for imaging, sensing, and data storage. Hence, the expansion of functionalities has been highly desired, in order to overcome the limited space constraints and realize the integration of several optical devices on a single compact platform. In this context, an electrically tunable metasurface that enables respective modulation of the phase and amplitude of reflected light, depending on the angle of incidence at the targeted wavelength, is proposed. This resonance-based device with hyperbolic metamaterial substrate excites different kinds of highly confined modes, according to the incident angle. Indium tin oxide is employed to offer electrically tunable optical properties in the near-infrared regime. At the wavelength of 1450 nm, the proposed device modulates the phase of reflected light with ~207 degrees of modulation depth for normal incidence, whereas it shows ~86% of relative reflectance change for oblique incidence of 60 degrees. In principle, the proposed scheme might provide a path to applications for the next-generation ultracompact integrated systems.

Keywords: electrically tunable; modulation; phase amplitude; hyperbolic metamaterial; metamaterial substrate; metasurface

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.