LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generation of 87Rb resonant bright two-mode squeezed light with four-wave mixing.

Photo from wikipedia

Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to… Click to show full abstract

Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to metrology experiments based on atomic ensembles, an efficient light-atom interaction is required. Thus, there is a particular interest in generating narrow-band squeezed light that is on atomic resonance. This will make it possible not only to enhance the sensitivity of atomic based sensors, but also to deterministically transfer quantum correlations between two distant atomic ensembles. We generate bright two-mode squeezed states of light, or twin beams, with a non-degenerate four-wave mixing (FWM) process in hot 85Rb in a double-lambda configuration. Given the proximity of the energy levels in the D1 line of 85Rb and 87Rb, we are able to operate the FWM in 85Rb in a regime that generates two-mode squeezed states in which both modes are simultaneously on resonance with transitions in the D1 line of 87Rb, one mode with the F = 2 to F' = 2 transition and the other one with the F = 1 to F' = 1 transition. For this configuration, we obtain an intensity difference squeezing level of 3.5 dB. Moreover, the intensity difference squeezing increases to -5.4 dB and -5.0 dB when only one of the modes of the squeezed state is resonant with the D1 F = 2 to F' =-2 or F = 1 to F' = 1 transition of 87Rb, respectively.

Keywords: two mode; bright two; squeezed light; mode squeezed; metrology

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.