LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carrier-envelope phase-dependent molecular high-order harmonic generation from H2+ in a multi-cycle regime.

Photo from wikipedia

Carrier-envelope phase (CEP) dependence of high-order harmonic generation (HHG) from H2+ in a multi-cycle laser pulse is investigated by solving the non-Born-Oppenheimer time-dependent Schrödinger equation (TDSE). It is found that… Click to show full abstract

Carrier-envelope phase (CEP) dependence of high-order harmonic generation (HHG) from H2+ in a multi-cycle laser pulse is investigated by solving the non-Born-Oppenheimer time-dependent Schrödinger equation (TDSE). It is found that high harmonics in the plateau exhibit counterintuitive frequency modulation (FM) as the CEP of the multi-cycle laser varies. Based on the classical electron trajectories and time-frequency analysis, this multi-cycle CEP-dependent FM is demonstrated to result from the interference of half-cycle HHG radiations, which is modulated by laser-driven nuclear motion. The mechanism of the CEP-dependent FM is further confirmed by simulations based on a simple algorithm in the time domain, which satisfactorily reproduces the TDSE results. The CEP-dependent FM encodes rich information on the correlated electron and nuclear dynamics, which paves the way for probing nuclear motion with attosecond resolution.

Keywords: multi cycle; cycle; high order; carrier envelope; envelope phase

Journal Title: Optics express
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.