LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring optical resonances of nanoparticles excited by optical Skyrmion lattices.

Photo from wikipedia

Recently, optical Skyrmion lattices (OSLs) have been realized in evanescent electromagnetic fields. OSLs possess topologically stable field configurations, which promise many optics and photonics applications. Here, we demonstrate that OSLs… Click to show full abstract

Recently, optical Skyrmion lattices (OSLs) have been realized in evanescent electromagnetic fields. OSLs possess topologically stable field configurations, which promise many optics and photonics applications. Here, we demonstrate that OSLs can serve as versatile structured optical near-fields to assist with studies of a variety of photonic modes in nanoparticles. We firstly show that OSL is capable of selectively exciting electric and magnetic multipole modes by placing a nanoparticle at different positions in the lattice. We then disclose that OSLs can efficiently excite some intriguing resonant modes, including toroidal and plasmonic dark modes, in dielectric or metal nanoparticles. Our results may enhance understanding of the interaction between OSLs and nanoparticles and find applications associated with precise control over resonant modes in nanostructures.

Keywords: skyrmion lattices; exploring optical; optical resonances; optical skyrmion; optics

Journal Title: Optics express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.