The rate of heat transfer by thermal radiation is a function of the number of channels that carry the electromagnetic energy, and the capacity of each channel to convey the… Click to show full abstract
The rate of heat transfer by thermal radiation is a function of the number of channels that carry the electromagnetic energy, and the capacity of each channel to convey the electromagnetic energy. In this research, we show that we can increase the number of these channels for a given emitter volume, and accordingly, we can enhance both near- and far-field thermal radiation exchange. We increase the number of channels by carving a variety of slots with different sizes. Using a modified finite-difference time-domain simulation, we show that the interweaved L slots achieved higher rates of heat transfer than the flat slab and straight slots (all having the same volume) by 15 and 2.5 times, respectively, for far-field thermal radiation (separation gap dc = 30 μm), and 5.6730 and 1.145 times for near-field thermal radiation (dc = 0.5 μm).
               
Click one of the above tabs to view related content.