The enhanced photonic spin Hall effect (SHE) based on the D-shaped fiber with Ag-Ni alloy/silicon layers is proposed and theoretically investigated under excitation of surface plasmon resonance (SPR). In order… Click to show full abstract
The enhanced photonic spin Hall effect (SHE) based on the D-shaped fiber with Ag-Ni alloy/silicon layers is proposed and theoretically investigated under excitation of surface plasmon resonance (SPR). In order to achieve the maximum transverse spin-dependent displacements for practical photonic devices, parameters such as the thickness of the Ag-Ni alloy and silicon layers in the D-shaped fiber are optimized. Theoretical modeling and numerical simulation demonstrate that the multilayer structure can effectively enhance the photonic SHE. The maximum transverse shift of 420 μm obtained with optimized parameters is larger than those in the literature. In addition, a maximum angular sensitivity of 114.6°/RIU is achieved by the wavelength interrogation method. Our concept and theoretical assessment suggest a novel and effective means to enhance the photonic SHE, bring us one step closer to the possibility to characterize parameters of dielectric layers by weak measurements, and accelerate the development of optical fibers based on the photonic SHE.
               
Click one of the above tabs to view related content.