LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of high quality silver nanowires and their applications in ultrafast photonics.

Photo from wikipedia

Silver nanowires are widely used in catalysts, surface enhanced Raman scattering, microelectronic equipment, thin film solar cells, microelectrodes and biosensors for their excellent conductivity, heat transfer, low surface resistance, high… Click to show full abstract

Silver nanowires are widely used in catalysts, surface enhanced Raman scattering, microelectronic equipment, thin film solar cells, microelectrodes and biosensors for their excellent conductivity, heat transfer, low surface resistance, high transparency and good biocompatibility. However, the optical nonlinearity of silver nanowires has not been further explored yet. In this paper, three silver nanowire samples with different concentrations are produced via a typical hydrothermal method. Their applications to fiber lasers are implemented to prove the optical nonlinearity of silver nanowires for the first time. Based on three kinds of silver nanowires, the mode-locked operation of fiber lasers is successfully realized. Moreover, the fiber laser based on the silver nanowire with a concentration of 2 mg/L demonstrates the shortest pulse duration of 149.3 fs. The experiment not only proves the optical nonlinearity of silver nanowires, but also has some enlightenment on the selection of the optimum concentration of silver nanowires in the consideration of ultrashort pulse output.

Keywords: synthesis high; optical nonlinearity; silver nanowires; silver; nonlinearity silver; photonics

Journal Title: Optics express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.