The effective medium approximation (EMA) model may cause a large deviation in the data analysis of spectroscopic ellipsometry (SE) for solid materials with randomly micro-rough surfaces since it ignores the… Click to show full abstract
The effective medium approximation (EMA) model may cause a large deviation in the data analysis of spectroscopic ellipsometry (SE) for solid materials with randomly micro-rough surfaces since it ignores the influence of the lateral irregularities of the rough surfaces on the electromagnetic scattering. In this work, a novel inversion framework is developed to extract optical constants from the SE parameters for solid materials with randomly micro-rough surfaces. Our approach enables the integration of the Levenberg-Marquardt optimization algorithm and the first-principles calculations of electromagnetic scattering. In each iterative step, the electromagnetic interactions with rough surfaces are accurately obtained from first-principles calculations without using the EMA model for rough estimation, which significantly guarantees the precision and wide applicability of our method for actual surfaces without a perfectly Gaussian height distribution. Furthermore, a superior advantage of our approach is that its error can be feasibly evaluated from the instrumental errors of the surface morphology detectors and the SE.
               
Click one of the above tabs to view related content.