LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Open-path multi-species remote sensing with a broadband optical parametric oscillator.

Open-path remote sensing is critical for monitoring fugitive emissions from industrial sites, where a variety of volatile organic compounds may be released. At ranges of only a few tens of… Click to show full abstract

Open-path remote sensing is critical for monitoring fugitive emissions from industrial sites, where a variety of volatile organic compounds may be released. At ranges of only a few tens of metres, spatially coherent broadband mid-infrared sources can access sufficiently large absorption cross-sections to quantify hydrocarbon gas fluctuations above ambient background levels at high signal:noise ratios. Here we report path-integrated simultaneous concentration measurements of water, methane and ethane implemented in the 3.1-3.5-µm range using 0.05-cm-1-resolution Fourier-transform spectroscopy with an ultrafast optical parametric oscillator and a simple, non-compliant target. Real-time concentration changes were observed at a range of 70 m by simulating a fugitive emission with a weak localized release of 2% methane in air. Spectral averaging yielded a methane detection sensitivity of 595 ppb·m, implying a system capability to resolve few-ppb concentrations of many volatile organic compounds at observation ranges of 50-100 m.

Keywords: open path; broadband; remote sensing; optical parametric; path; parametric oscillator

Journal Title: Optics express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.