LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A modeling of dispersive tensorial second-order nonlinear effects for the finite-difference time-domain method.

A generalized formalism is developed to model second-order nonlinear processes in finite-difference time-domain (FDTD) simulations. The method is capable of modeling frequency-conversion from all 18 elements of the second-order nonlinear… Click to show full abstract

A generalized formalism is developed to model second-order nonlinear processes in finite-difference time-domain (FDTD) simulations. The method is capable of modeling frequency-conversion from all 18 elements of the second-order nonlinear tensor, where dispersion of the tensor elements is included at both the pump and generated frequencies. The model is validated by considering frequency-conversion in a LiNbO3 crystal, which has highly dispersive second-order nonlinear susceptibilities near the phonon resonances. The developed nonlinear formalism is able to model any arbitrary excitation polarization state and can be applied to investigate second-order nonlinear processes in type I or type II phase-matching. This generalized second-order nonlinear formalism represents an advancement for the FDTD computational technique and can provide more realistic modeling of second-order nonlinear interactions in nanoscale devices and waveguiding structures.

Keywords: time domain; difference time; finite difference; order nonlinear; second order

Journal Title: Optics express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.