LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monolithic InAs/InP quantum dash dual-wavelength DFB laser with ultra-low noise common cavity modes for millimeter-wave applications.

Photo by ankit_pai_n from unsplash

We have developed and experimentally demonstrated a novel monolithic InAs/InP quantum-dash dual-wavelength distributed feedback (QD DW-DFB) C-band laser as a compact optical beat source to generate millimeter-wave (MMW) signals. The… Click to show full abstract

We have developed and experimentally demonstrated a novel monolithic InAs/InP quantum-dash dual-wavelength distributed feedback (QD DW-DFB) C-band laser as a compact optical beat source to generate millimeter-wave (MMW) signals. The device uses a common gain medium in a single cavity structure for simultaneous correlated and stable dual-mode lasing in the 1550-nm wavelength range. A record narrow optical linewidth down to 15.83 kHz and average relative intensity noise (RIN) as low as -158.3 dB/Hz from 10 MHz to 20 GHz are experimentally demonstrated for the two optical modes generated by the laser. As a result, the beat note between these two lasing modes generates spectrally pure MMW signals between 46 GHz and 48 GHz. Such an efficient, coherent, and compact optical source is extremely attractive for applications in MMW systems, such as Radar and fiber-wireless integrated fronthaul for 5G and beyond.

Keywords: monolithic inas; inp quantum; dash dual; quantum dash; inas inp; wavelength

Journal Title: Optics express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.