LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Room-temperature long-wave infrared detector with thin double layers of amorphous germanium and amorphous silicon.

Photo from wikipedia

A longwave-infrared photodetector made of double layers of 100nm amorphous germanium (a-Ge) and 25nm amorphous silicon (a-Si) have been demonstrated. Under room temperature, the device shows the responsivity of 1.7… Click to show full abstract

A longwave-infrared photodetector made of double layers of 100nm amorphous germanium (a-Ge) and 25nm amorphous silicon (a-Si) have been demonstrated. Under room temperature, the device shows the responsivity of 1.7 A/W, detectivity of 6×108 Jones, and noise equivalent power (NEP) of 5pW/√Hz under 5V bias and at 20kHz operation. Studies of frequency dependent characteristics and device modeling indicate that, above 100Hz or beyond the bandwidth of thermal response, the device operates as a quantum detector having the photoelectrons produced by optical excitation from the bandtail states to the mobile states of a-Ge. The superior device performance may be attributed to the combination of two amplification mechanisms: photoconductive gain in a-Ge and cycling excitation process (CEP) in a-Si, with the latter being the dominant factor. Besides its attractive performance, the device has a simple structure and is easy to fabricate at low cost, thus holding promise for night vision, sensing, autonomous driving, and many other applications.

Keywords: amorphous germanium; amorphous silicon; double layers; room temperature

Journal Title: Optics express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.