A fundamental challenge with fluorophore orientation measurement is degeneracy, which is the inability to distinguish between multiple unique fluorophore orientations. Techniques exist for the non-degenerate measurement of the orientations of… Click to show full abstract
A fundamental challenge with fluorophore orientation measurement is degeneracy, which is the inability to distinguish between multiple unique fluorophore orientations. Techniques exist for the non-degenerate measurement of the orientations of single, static fluorophores. However, such techniques are unsuitable for densely labeled and/or dynamic samples common to biological research. Accordingly, a rapid, widefield microscopy technique that can measure orientation parameters for ensembles of fluorophores in a non-degenerate manner is desirable. We propose that exciting samples with polarized light and multiple incidence angles could enable such a technique. We use Monte Carlo simulations to validate this approach for specific axially symmetric ensembles of fluorophores and obtain optimal experimental parameters for its future implementation.
               
Click one of the above tabs to view related content.