In this work, we developed a new theoretical framework using wave optics to explain the working mechanism of the grating based X-ray differential phase contrast imaging (XPCI) interferometer systems consist… Click to show full abstract
In this work, we developed a new theoretical framework using wave optics to explain the working mechanism of the grating based X-ray differential phase contrast imaging (XPCI) interferometer systems consist of more than one phase grating. Under the optical reversibility principle, the wave optics interpretation was simplified into the geometrical optics interpretation, in which the phase grating was treated as a thin lens. Moreover, it was derived that the period of an arrayed source, e.g., the period of a source grating, is always equal to the period of the diffraction fringe formed on the source plane. When a source grating is utilized, the theory indicated that it is better to keep the periods of the two phase gratings different to generate large period diffraction fringes. Experiments were performed to validate these theoretical findings.
               
Click one of the above tabs to view related content.