LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wavelength-dependent orientation of the principal axes of photonic crystal fibers measured by windowed Fourier-transform spectral interferometry.

Photo from wikipedia

We present a novel polarization alignment technique based on windowed Fourier-transform (WFT) spectral interferometry to determine the wavelength-dependent orientation of the principal polarization axes of photonic crystal fibers (PCFs). To… Click to show full abstract

We present a novel polarization alignment technique based on windowed Fourier-transform (WFT) spectral interferometry to determine the wavelength-dependent orientation of the principal polarization axes of photonic crystal fibers (PCFs). To test the technique, a commercially available, 82.5-cm-long HC-800-02 type hollow-core PCF was measured. The angles belonging to the fast and the slow principal axes of the fiber were determined from the peak intensity values of the ridges in the WFT map at different wavelengths. We demonstrate that the orientation of the principal polarization axes of the tested PCF is wavelength-dependent. The precision of the angle measurement was better than 0.3°.

Keywords: wavelength dependent; spectral interferometry; fourier transform; windowed fourier; orientation principal

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.