LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and experimental demonstration of Doppler cloak from spatiotemporally modulated metamaterials based on rotational Doppler effect.

Photo by stevenrector from unsplash

Recently, spatiotemporally modulated metamaterial has been theoretically demonstrated for the design of Doppler cloak, a technique used to cloak the motion of moving objects from the observer by compensating for… Click to show full abstract

Recently, spatiotemporally modulated metamaterial has been theoretically demonstrated for the design of Doppler cloak, a technique used to cloak the motion of moving objects from the observer by compensating for the Doppler shift. Linear Doppler effect has an angular counterpart, i.e., the rotational Doppler effect, which can be observed by the orbital angular momentum (OAM) of light scattered from a spinning object. In this work, we predict that the spatiotemporally modulated metamaterial has its angular equivalent phenomenon. We therefore propose a technique to observe the rotational Doppler effect by cylindrical spatiotemporally modulated metamaterial. Conversely, such a metamaterial is able to cloak the Doppler shift associated with linear motion by generating an opposite rotational Doppler shift. This novel concept is theoretically analyzed, and a conceptual design by spatiotemporally modulating the permittivity of a voltage-controlled OAM ferroelectric reflector is demonstrated by theoretical calculation and numerical simulation. Finally, a Doppler cloak is experimentally demonstrated by a spinning OAM metasurface in radar system, which the spatiotemporal reflection phase are mechanically modulated. Our work presented in this paper may pave the way for new directions of OAM carrying beams and science of cloaking, and also explore the potential applications of tunable materials and metasurfaces.

Keywords: cloak; doppler effect; rotational doppler; doppler; spatiotemporally modulated

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.