We theoretically study the interference of photoelectrons released from atomic p± orbitals in co-rotating and counter-rotating circularly polarized two-color laser pulses consisting of a strong 400-nm field and a weak… Click to show full abstract
We theoretically study the interference of photoelectrons released from atomic p± orbitals in co-rotating and counter-rotating circularly polarized two-color laser pulses consisting of a strong 400-nm field and a weak 800-nm field. We find that in co-rotating fields the interference fringes in the photoelectron momentum distributions are nearly the same for p± orbitals, while in counter-rotating fields the interference fringes for p+ and p- orbitals oscillate out of phase with respect to the electron emission angle. The simulations based on the strong-field approximation show a good agreement with the numerical solutions of the time-dependent Schrödinger equation. We find that different phase distributions of the electron wave packets emitted from p+ and p- orbitals can be easily revealed by the counter-rotating circularly polarized two-color laser fields. We further show that the photoelectron interference patterns in the circularly polarized two-color laser fields record the time differences of the electron wave packets released within an optical cycle.
               
Click one of the above tabs to view related content.