LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High pulsed power VCSEL arrays with polymer microlenses formed by photoacid diffusion.

Photo by mbrunacr from unsplash

We demonstrate millimeters-long VCSEL linear arrays with SU-8 epoxy-based microlenses that are directly patterned and cross-linked on the output apertures by a simple, photoacid-diffusion-aided photolithography technique. The linear arrays are… Click to show full abstract

We demonstrate millimeters-long VCSEL linear arrays with SU-8 epoxy-based microlenses that are directly patterned and cross-linked on the output apertures by a simple, photoacid-diffusion-aided photolithography technique. The linear arrays are capable of delivering >7 W of peak pulsed output power. By exploiting the photoacid diffusion effect, it is possible to produce a range of microlens structures with height and radius of curvature ranging from approximately ten to tens of microns. Simulation and experimental results show that the far-field beam divergence can be reduced by a factor of up to 7 in VCSELs integrated with optimal microlens dimensions.

Keywords: diffusion; power vcsel; photoacid diffusion; high pulsed; pulsed power

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.