LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical quantum frequency filter based on generalized eigenstates.

Photo from academic.microsoft.com

Bound eigenstates and generalized eigenstates (scattering eigenstates) are two kinds of eigenstates in quantum mechanics. In this work, we first introduce a systematic way to regularize a generalized eigenstates by… Click to show full abstract

Bound eigenstates and generalized eigenstates (scattering eigenstates) are two kinds of eigenstates in quantum mechanics. In this work, we first introduce a systematic way to regularize a generalized eigenstates by using the Wick rotation. The states that can be regularized are, in fact, Gamow states since they form poles in the scattering matrix but not localized before the Wick rotation. We then demonstrate an example where a bosonic field interacting with an array of two level systems can have Gamow states with positive real eigenenergies, and the scattering spectrum diverges at the eigenenergy. Since the eigenenergies of this kind locate in a real continuous scattering spectrum, from the scattering matrix point of view, these states resemble the bound states in the continuum (BIC). Unlike BIC, however, these states are non-localized in space and possess the frequency-filtering nature which may lead to potential applications in tunable quantum frequency filters for scattering states.

Keywords: optical quantum; generalized eigenstates; frequency; filter based; quantum frequency; frequency filter

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.