LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Broadband continuous/discrete spectrum optical absorber using graphene-wrapped fractal oligomers.

Photo from wikipedia

In this paper, a second-order fractal oligomer constructed by graphene-coated cylindrical nano-rods is proposed as the unit cell of a wideband optical absorber. Nano-rods have resided on a dielectric substrate… Click to show full abstract

In this paper, a second-order fractal oligomer constructed by graphene-coated cylindrical nano-rods is proposed as the unit cell of a wideband optical absorber. Nano-rods have resided on a dielectric substrate with a thick metallic mirror. The fractional bandwidth of the designed structure is 88.67% for the absorption above 90%. Broadband absorption originates from the cooperative excitation of localized surface plasmon resonances (LSPRs) of the bottom, top, and lateral surfaces of the rods, engineered by the geometrical parameters through the fractal concept. Designed full absorber has an acceptable performance concerning the incident angles up to around 35° and it is polarization insensitive. Moreover, broadband absorption can be altered to multi-band performance in the same spectrum with the desired number of frequency bands. This feature is obtained by manipulating the substrate thickness to excite multiple orders of Fabry-Perot cavity resonances. Our proposed structure has potential applications in various optical devices such as filters, sensors, and modulators.

Keywords: optical absorber; broadband continuous; graphene; spectrum; absorber; continuous discrete

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.