LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Real-time 3D shape measurement with dual-frequency composite grating and motion-induced error reduction.

Photo from wikipedia

Phase-shifting profilometry has been increasingly sought and applied in dynamic three-dimensional (3D) shape measurement. However, the object motion will lead to extra phase shift error and thus measurement error. In… Click to show full abstract

Phase-shifting profilometry has been increasingly sought and applied in dynamic three-dimensional (3D) shape measurement. However, the object motion will lead to extra phase shift error and thus measurement error. In this paper, a real-time 3D shape measurement method based on dual-frequency composite phase-shifting grating and motion-induced error reduction is proposed for a complex scene containing dynamic and static objects. The proposed method detects the motion region of a complex scene through the phase relations of the dual-frequency composite grating and reduces the motion-induced error with the combination of the phase calculated by a phase-shifting algorithm and the phase extracted by Fourier fringe analysis. It can correctly reconstruct the 3D shape of a complex dynamic scene and ensure high measurement accuracy of its static object as well. With the aid of the phase-shifting image ordering approach, the dynamic 3D shape of complex scenes can be reconstructed and the motion-induced error can also be suppressed in real time. Experimental results well proved that the proposed method is effective and practical.

Keywords: phase; induced error; motion induced; shape

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.