LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-speed drilling of alumina ceramic by sub-microsecond pulsed thin disk laser.

Photo from wikipedia

The rapid development of optoelectronic components has demanded high-speed drilling for alumina ceramic substrate. However, the existing drilling speed cannot meet the demand due to the limitation of conventional laser… Click to show full abstract

The rapid development of optoelectronic components has demanded high-speed drilling for alumina ceramic substrate. However, the existing drilling speed cannot meet the demand due to the limitation of conventional laser system and drilling method. In this paper, by adopting a sub-microsecond pulsed thin disk laser that based on a multi-pass pumping module, a laser system with a pulse energy of 37.4 mJ and a peak power of 103.8 kW is developed, which helps us to achieve high processing efficiency. In addition, experimental and theoretical analysis suggest the positive defocusing method can be used to control the hole taper angle, and micro-holes with a hole diameter difference less than 6% is realized, which helps us to achieve high processing quality. Ultimately, it is reported that the drilling speed for micro-holes with a diameter of ∼150 µm reaches 30 holes per second, and for micro-holes with a diameter of ∼100 µm reaches as high as 66 holes per second. The performance of the sub-microsecond pulsed thin disk laser presented in this paper provides a reference in the field of high-speed laser processing.

Keywords: laser; sub microsecond; pulsed thin; speed; microsecond pulsed; high speed

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.