LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical performance monitoring using digital coherent receivers and convolutional neural networks.

Photo from academic.microsoft.com

We experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems… Click to show full abstract

We experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems using convolutional neural networks (CNN). We assess the benefits and challenges of extracting information at two distinct points within the demodulation process: immediately after timing recovery and immediately prior to symbol unmapping. For the former, we use 3D Stokes-space based signal representations. For the latter, we use conventional I-Q constellation images created using demodulated symbols. We demonstrate these methods on simulated and experimental dual-polarized waveforms for 32-GBaud QPSK, 8QAM, 16QAM, and 32QAM. Our results show that CNN extracts distinct and learnable features at both the early stage of demodulation where the information can be used to optimize subsequent stages and near the end of demodulation where the constellation images are readily available. Modulation format identification is demonstrated with >99.8% accuracy, OSNR estimation with <0.5 dB average discrepancy and BER estimation with percentage error of <25%.

Keywords: monitoring using; estimation; neural networks; optical performance; performance monitoring; convolutional neural

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.