Different from the existing methods for estimating averaged slant visibility by lidar and the traditional Koschmieder visibility formula, a measurement method for slant visibility is fundamentally proposed in this paper… Click to show full abstract
Different from the existing methods for estimating averaged slant visibility by lidar and the traditional Koschmieder visibility formula, a measurement method for slant visibility is fundamentally proposed in this paper that considers the correction of slant path scattered radiance. Lidar is adopted to provide aerosol parameters, including optical depth and scattering parameters, and the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model is used to solve the radiative transfer equation to obtain the corresponding radiance distribution; thus, the corrected apparent brightness contrast between the object and background along the slant path is used to achieve accurate slant visibility. Based on the measurement principle of slant visibility, a theoretical simulation and an analysis of the slant path scattered radiance are performed, and the resulting slant visibility is studied in detail in this paper.
               
Click one of the above tabs to view related content.