LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spectral absorptance of a metal-semiconductor-metal thin-multilayer structured thermophotovoltaic cell.

Photo from wikipedia

Spectral absorptance of a metal-semiconductor-metal (MSM) thin-multilayer structured thermo-photovoltaic cell was experimentally investigated. A MSM consists of a thin GaSb-semiconductor sandwiched between a top fishnet-type electrode and a flat backside… Click to show full abstract

Spectral absorptance of a metal-semiconductor-metal (MSM) thin-multilayer structured thermo-photovoltaic cell was experimentally investigated. A MSM consists of a thin GaSb-semiconductor sandwiched between a top fishnet-type electrode and a flat backside electrode made of gold. A thin GaSb layer was grown on a substrate made of InAs using molecular beam epitaxy, and then all of the InAs substrate was removed using wet etching. The GaSb film was bonded on a surface of gold, which was sputtered on a Si substrate, using a van der Waals bonding method. The top fishnet-type electrode was made using electron beam lithography and a lift-off process. In the case of a 115 nm thick GaSb layer and a square fishnet aperture of a 300 nm × 310 nm size, the spectral absorptance of MSM reached a local peak (95%) at a wavelength of 1.66 µm, which is similar to spectra predicted by numerical simulation. Moreover, the equivalent resonance cavity model and LC circuit model functioned well to indicate the wavelength of several distinct peaks of absorptance.

Keywords: absorptance metal; metal semiconductor; absorptance; metal; spectral absorptance

Journal Title: Optics express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.