Coherent two-dimensional (2D) electronic spectroscopy has become a standard tool in ultrafast science. Thus it is relevant to consider the accuracy of data considering both experimental imperfections and theoretical assumptions… Click to show full abstract
Coherent two-dimensional (2D) electronic spectroscopy has become a standard tool in ultrafast science. Thus it is relevant to consider the accuracy of data considering both experimental imperfections and theoretical assumptions about idealized conditions. It is already known that chirped excitation pulses can affect 2D line shapes. In the present work, we demonstrate performance-efficient, automated characterization of the full electric field of each individual multipulse sequence employed during a 2D scanning procedure. Using Fourier-transform spectral interferometry, we analyze how the temporal intensity and phase profile varies from scanning step to scanning step and extract relevant pulse-sequence parameters. This takes into account both random and systematic variations during the scan that may be caused, for example, by femtosecond pulse-shaping artifacts. Using the characterized fields, we simulate and compare 2D spectra obtained with idealized and real shapes obtained from an LCD-based pulse shaper. Exemplarily, we consider fluorescence of a molecular dimer and multiphoton photoemission of a plasmonic nanoslit. The deviations from pulse-shaper artifacts in our specific case do not distort strongly the population-based multidimensional data. The characterization procedure is applicable to other pulses-shaping technologies or excitation geometries, including also pump-probe geometry with multipulse excitation and coherent detection, and allows for accurate consideration of realistic optical excitation fields at all inter-pulse time-delays.
               
Click one of the above tabs to view related content.