LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D integrated wavelength demultiplexer based on a square-core fiber and dual-layer arrayed waveguide gratings.

Photo from wikipedia

We present a 3D integrated wavelength demultiplexer using a square-core fiber (SCF) and matched dual-layer arrayed waveguide gratings (AWGs). The SCF works as a 3D fiber multimode interference device, which… Click to show full abstract

We present a 3D integrated wavelength demultiplexer using a square-core fiber (SCF) and matched dual-layer arrayed waveguide gratings (AWGs). The SCF works as a 3D fiber multimode interference device, which splits the input light into symmetric four spots. The spots are then coupled to a pitch-matched 4-waveguide network, each connecting an AWG. Interface waveguides are designed to improve the coupling efficiency between the SCF and the dual-layer chip. The four AWGs are designed with different central wavelengths and a large free spectral range (FSR) of 120 nm. To reach a small and uniform insertion loss among different channels, only the central channels of each AWG are used for demultiplexing. The device is fabricated on a polymer platform. The upper and lower layers of the chip are fabricated using the same photolithography mask but rotated 180° so that 4 different AWG designs can be mapped to a single chip. The measured transmission spectra of the four AWGs cover a bandwidth of 112 nm. The insertion loss variation is smaller than 1.4 dB. The designed device can find applications in fiber optic sensing, communication, and astronomy.

Keywords: dual layer; layer; wavelength demultiplexer; integrated wavelength; core fiber; square core

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.