LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots.

Photo by efekurnaz from unsplash

Förster resonance energy transfer (FRET) from a green-emitting quantum dot (GQD) into a red-emitting quantum dot (RQD) is an important mechanism in a multiple-color conversion process, particularly under the surface… Click to show full abstract

Förster resonance energy transfer (FRET) from a green-emitting quantum dot (GQD) into a red-emitting quantum dot (RQD) is an important mechanism in a multiple-color conversion process, particularly under the surface plasmon (SP) coupling condition for enhancing color conversion efficiency. Here, the dependencies of FRET efficiency on the relative concentrations of GQD and RQD in their mixtures and their surface molecule coatings for controlling surface charges are studied. Also, the SP coupling effects induced by two kinds of Ag nanoparticles on the emission behaviors of GQD and RQD are demonstrated, particularly when FRET is involved in the coupling process. FRET efficiency is reduced under the SP coupling condition. SP coupling can enhance the color conversion efficiency of either GQD or RQD. The combination of SP coupling and FRET can be used for controlling the relative converted light intensities in a multiple-color conversion process.

Keywords: surface; color; color conversion; rster resonance; quantum

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.