Fiber probes for optical coherence tomography (OCT) recently employ a short section of step-index multimode fiber (SIMMF) to generate output beams with extended depth of focus (DOF). As the focusing… Click to show full abstract
Fiber probes for optical coherence tomography (OCT) recently employ a short section of step-index multimode fiber (SIMMF) to generate output beams with extended depth of focus (DOF). As the focusing region of the output beam is generally close to the probe end, it is not feasible to adopt the methods for bulk-optics with spatial pupil filters to the fiber probes with fiber-based filters. On the other hand, the applicable method of the beam propagation method (BPM) to the fiber probes is computationally inefficient to perform parameter scan and exhaustive search optimization. In this paper, we propose the method which analyzes the non-Gaussian beams from the fiber probes with fiber-based filters using the eigenmode expansion (EME) method. Furthermore, we confirm the power of this method in designing fiber-based filters with increased DOF gain and uniformly focusing by introducing more and higher-order fiber modes. These results using the EME method are in good agreement with that by the BPM, while the latter takes 1-2 orders more computation time. With higher-order fiber modes involved, a novel probe design with increased DOF gain and suppressed sidelobe is proposed. Our findings reveal that the fiber probes based on SIMMFs are able to achieve about four times DOF gain at maximum with uniformly focusing under acceptable modal dispersion. The EME method enables fast and accurate simulation of fiber probes based on SIMMFs, which is important in the design of high-performance fiber-based micro-imaging systems for biomedical applications.
               
Click one of the above tabs to view related content.