LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Four-wave mixing in a ladder configuration of warm 87Rb atoms: a theoretical study.

Photo from wikipedia

We present a theoretical study of the four-wave mixing (FWM) spectra of 5S1/2 - 5P3/2 - 5D5/2 ladder-type transitions of 87Rb atoms. The density matrix equations are solved by considering all the magnetic sublevels… Click to show full abstract

We present a theoretical study of the four-wave mixing (FWM) spectra of 5S1/2 - 5P3/2 - 5D5/2 ladder-type transitions of 87Rb atoms. The density matrix equations are solved by considering all the magnetic sublevels to calculate the FWM signals in the atomic vapor cell. These results are subsequently compared with the experimental results. We observe that the FWM signal propagating exactly opposite to the driving field is measured experimentally. Additionally, we demonstrate the effects of optical depth, laser linewidths, and the coupling field power on the FWM spectra. Finally, the origin of the dispersive-like FWM signal is investigated by intentionally varying the intrinsic atomic properties.

Keywords: theoretical study; wave mixing; mixing ladder; four wave; 87rb atoms; study four

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.