LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing.

Photo by von_co from unsplash

A trace gas detection technique of quartz-enhanced photoacoustic-photothermal spectroscopy (QEPA-PTS) is demonstrated. Different from quartz-enhanced photoacoustic spectroscopy (QEPAS) or quartz-enhanced photothermal spectroscopy (QEPTS), which detected only one single kind of… Click to show full abstract

A trace gas detection technique of quartz-enhanced photoacoustic-photothermal spectroscopy (QEPA-PTS) is demonstrated. Different from quartz-enhanced photoacoustic spectroscopy (QEPAS) or quartz-enhanced photothermal spectroscopy (QEPTS), which detected only one single kind of signal, QEPA-PTS was realized by adding the photoacoustic and photothermal signals generated from two quartz tuning forks (QTFs), respectively. Water vapor (H2O) with a volume concentration of 1.01% was selected as the analyte gas to investigate the QEPA-PTS sensor performance. Compared to QEPAS and QEPTS, an enhanced signal level was achieved for this QEPA-PTS system. Further improvement of such a technique was proposed.

Keywords: gas; quartz enhanced; enhanced photoacoustic; photoacoustic photothermal; spectroscopy; photothermal spectroscopy

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.