LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pure quartic solitons in dispersion-engineered aluminum nitride micro-cavities.

Photo from wikipedia

Pure quartic soliton (PQS) is a new class of solitons demonstrated in recent years and provides innovations in nonlinear optics and its applications. Generating PQSs in micro-cavities offers a novel… Click to show full abstract

Pure quartic soliton (PQS) is a new class of solitons demonstrated in recent years and provides innovations in nonlinear optics and its applications. Generating PQSs in micro-cavities offers a novel way to achieve coherent microcombs, presenting a promising application potential. Here we numerically investigate the PQS generation in a dispersion-engineered aluminum nitride (AlN) micro-cavity. To support PQS, a well-designed shallow-trench waveguide structure is adopted, which is feasible to be fabricated. The structure exhibits a dominant fourth-order dispersion reaching up to -5.35×10-3 ps4/km. PQSs can be generated in this AlN micro-cavity in the presence of all-order-dispersion and stimulated Raman scattering. Spectral recoil and soliton self-frequency shift are observed in the PQS spectrum. Furthermore, we find that due to the narrow Raman gain spectrum of crystalline AlN, the PQS evolves directly to chaos rather than turning into a breather. The threshold pump power with which the PQS turns into chaos is also theoretically calculated, which squares with the simulation results.

Keywords: dispersion; aluminum nitride; pure quartic; micro cavities; dispersion engineered; engineered aluminum

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.