LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials.

Photo from wikipedia

In this paper, we design a polarization-independent and angle-insensitive broadband THz graphene metamaterial absorber based on the surface plasmon-polaritons resonance. Full-wave simulation is conducted, and the results show that the… Click to show full abstract

In this paper, we design a polarization-independent and angle-insensitive broadband THz graphene metamaterial absorber based on the surface plasmon-polaritons resonance. Full-wave simulation is conducted, and the results show that the designed metamaterial absorber has an absorption above 99% in the frequency range from 1.23 THz to 1.68 THz, which refers to a very high standard. Furthermore, the absorber has the properties of tunability, and the absorption can be nearly adjusted from 1% to 99% by varying the Fermi energy level of the graphene from 0 eV to 0.7 eV. In the simulation, when the incident angles of TE and TM waves change from 0° to 60°, the average absorption keeps greater than 80%. The proposed absorber shows promising performance, which has potential applications in developing graphene-based terahertz energy harvesting and thermal emission.

Keywords: polarization independent; independent angle; angle insensitive; insensitive broadband

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.