LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Goal-driven method for decoding the configuration of coherent wave groups required for the generation of arbitrary-order vortex lattices.

Photo from wikipedia

Together, the number of waves, wave vectors, amplitudes, and additional phases constitute the coherent wave group configuration and determine the pattern of the interference field. Identifying an appropriate wave group… Click to show full abstract

Together, the number of waves, wave vectors, amplitudes, and additional phases constitute the coherent wave group configuration and determine the pattern of the interference field. Identifying an appropriate wave group configuration is key to generating vortex lattices via interferometry. Previous studies have approached this task by first assigning the four elements, then calibrating the vortex state of the interference field. However, this method has failed to progress beyond generating third-order vortex lattices, which are insufficient for some practical applications. Therefore, this study proposes a method for determining the proper wave group configurations corresponding to arbitrary-order vortex lattices. We adopt a goal-driven approach: First, we set a vortex lattice as the target field and model it, before decomposing the target field into a sum of multiple harmonics using Fourier transforms. These harmonics constitute the wave group required to generate the target vortex lattice. As vortex lattices of any order can be set as the target field, the proposed method is compatible with any mode order. Simulations and experiments were conducted for fourth- and fifth-order vortex lattices, thus demonstrating the effectiveness of the proposed method.

Keywords: field; vortex lattices; configuration; vortex; order vortex

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.